Majorana Fermion Experiments in Nanowires

Kitaev Model mapped on to
superconductor-semiconductor hybrids

Experimental signature: zero-bias peaks

Modern state of the field

Andreev states in quantum dots

~ Delft experiment

s Sciepce _2012




Majorana recipe for nanowires:

1. One-dimensional wire
2. Spin-orbit interaction

3. Superconductivity

4. Magnetic field

Lutchyn, Sau, Das Sarma, PRL 2010
Oreg, Refael, von Oppen, PRL 2010
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Trivial Superconductor Majorana Topological Superconductor
“positive gap” “zero gap” “negative gap”



Tunneling experiment
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Tunneling into a Majorana bound state:

Resonant Andreev current!
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Which nanowire? Which superconductor?

Need:

e strong spin-orbit coupling
e large g-factor

e ballistic 1D transport

Need:

e large gap

e withstand high B-fields

e small work function mismatch

INnAs nanowires:

g = 6-10, Iso=100 nm
Disorder is high (low mobility)

InSb nanowires:

Larger g, similar Iso, “cleaner”

Aluminum contacts:

Gap ~ 100 ueV
Critical field ~100 mT

NbTiN contacts:
Gap ~ 3meV
Critical field > 10 T






First Majorana ingredient: one-dimensional system
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Multi-subband topological superconductor

gusB(0) > Aﬁ=o,N + pu?(x)

20 40 60 80 100 120 140
Zeeman field T/E,

Stanescu, Lutchyn, Das Sarma; Phys Rev B 2011



Spin-orbit strength in InSb nanowires

Nadj-Perge et al. PRL 2012

Detuning energy (meV)

A,,=0.3 meV

Iso =200 nm

A, /qusB = 0.06 and g = 43




Majorana recipe:

1. One-dimensional wire

2. Spin-orbit interaction

3. Superconductivity

4. Magnetic field

N s, T1e

Detuning € (meV)

dl/de (a.u.)

18 2 24 18 2 24
Magnetic field B (T) Magnetic field B (T)

InAs NW, C. Fasth et. al, PRL 2007; Pfund, PRB 2007;

INSb NW, H. A. Nillson et. al, Nano Lett. 2010

Nadj-Perge et al. PRL 2012

Not the subband spin-orbit splitting!
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Observation of zero bias peak
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Temperature dependence
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=> Temperature scale 1s 0.3-0.4 Kelvin
Data: Delft



Gate dependence: under the superconductor
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Gate dependence: barrier gate
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Majorana recipe:

1. One-dimensional wire ¢

) Soin-orbits .

3. Superconductivity

4. Magnetic field ¢/
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Third device in a 3D vector magnet
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Majorana recipe:

1. One-dimensional wire ¢/
2. Spin-orbit interaction ¢/

—3.Superconductivity —  No robust zero bias peaks observed
4. Magnetic field ¢/ ﬁ” !

2.5 um



Disorder
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> 50

In INSb

...80, 1 Tesla = 1.5 meV



(a) di/dV [2€%/h]
ONEE___1m0.05

12 16 20 24 28
B-(mT)

EJH Lee et al, PRL 2012



Vsd (mV)

di/dV
[2e%h]

0.04
0.03

0.02
0.01



How would Kondo effect look?

Data: Delft



July 2011: Two Superconducting Contacts

Josephson

Deng et at, Nano Letters 2012 Finck et al, PRL 2012
“Observation of Majorana Fermions in a Nb- “...while considering more mundane
InSb Nanowire-Nb Hybrid Quantum Device” explanations.”
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Supercurrents surviving to 2 Tesla.
Contact spacing = 900 nm

(Dark regions near zero bias = supercurrent)

[
|

|
i@
]

l

B, s

—
T
—
) -
- =
—. =
===
=

20 sm 20

Data: Delft



Play with gates — make ZBP due to
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Data: Delft



Zero-voltage conductance peak from weak antilocalization in a Majorana nanowire

D. I. Pikulin,! J. P. Dahlhaus,! M. Wimmer,! H. Schomerus.? and C. W. J. Beenakker!

! Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
“Department of Physics, Lancaster University, Lancaster, LA1 JYB, United Kingdom
(Dated: August 2012)
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2012 signatures of Majorana

Zero bias peak (ZBP) onsets at B ~ 100 mT
E,~150 ueV,so E, ~ A

ZBP remains stuck to zero bias over
significant range of B
(peak width 30 ueV, AE, ~ 0.5-1.5 meV)

ZBP persist over large gate ranges for all gates,
but gate tuning is required!

) ) . . “200 0 20 0.05 B(T) 0.25
ZBP vanishes when B i1s aligned with Bg) V (1)

ZBP robust in both gate and magnetic field NOT OBSERVED
in three N-N'W-N devices (superconductivity is important)

Trivial alternative scenarios ruled out easily (Kondo, Josephson, WAL...)



Where we are now
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/BP splitting: coupled Majoranas?

(c) Multimode, sharp pinch—off
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Where is the second Majorana?
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